
A ARCOS-UC3M

RISC-V Reference Guide (CREATOR Simulator)
System Calls (ecall)

Service Call Code
(a7)

Arguments Result

Print_int 1 a0 = integer
Print_float 2 fa0 = float
Print_double 3 fa0 = double
Print_string 4 a0 = string addr
Read_int 5 Integer in a0
Read_float 6 Float in fa0
Read_double 7 Double in

fa0
Read_string 8 a0 = string addr

a1 = length
Sbrk 9 a0 = length Address in

a0
Exit 10
Print_char 11 a0 = ASCII code
Read_char 12 Char in a0

Integer Registers
Register Name Usagezero Constant 0ra Return address (routines/functions)sp Stack pointergp Global pointertp Thread pointert0..t6 Temporary (NOT preserved across calls)s0..s11 Saved temporary (preserved across

calls)a0, a1 Arguments for functions / return valuea2..a7 Arguments for functions
Floating-point registersft0..ft11 Temporary (NOT preserved across calls)fs0..fs11 Saved temporary (preserved across

calls)fa0, fa1 Arguments for functions / return valuefa2..fa7 Arguments for functions
Data transfer Arithmetic (floating-point, .s/.d)li rd, n rd = n (PseudoInst, n-> 32 bits) fmv.s fd, fs1 fd = fs1mv rd, rs rd = rs fadd.s fd, fs1, fs2 fd = fs1+fs2lui rd, inm rd = inm[31:12] <<12 (extend the sign) fsub.s fd, fs1, fs2 fd = fs1-fs2

Arithmetic (integer) fmul.s fd, fs1, fs2 fd = fs1*fs2add rd, rs1, rs2 rd = rs1+rs2 fdiv.s fd, fs1, fs2 fd = fs1/fs2addi rd, rs1, n rd = rs1 + n (n-> 12 bits) fmin.s fd, fs1, fs2 fd = min(fs1,fs2)sub rd, rs1, rs2 rd = rs1- rs2 fmax.s fd, fs1, fs2 fd = max(fs1,fs2)mul rd, rs1, rs2 rd = rs1* rs2 fsqrt.s fd, fs1 fd = sqrt(fs1)div rd, rs1, rs2 rd = rs1/rs2 fmadd.s fd, fs1, fs2, fs3 fd = fs1*fs2+fs3rem rd, rs1, rs2 rd = rs1% rs2 fmsub.s fd, ff1, fs2, fs3 fd = fs1*fs2-fs3
Logical (integer) fabs.s fd, fs1 fd = |fs|and rd, rs1, rs2 rd = rs1 AND rs2 fneg.s fd, fs1 fd = -fsandi rd, rs1, n rd = rs1 AND n (n-> 12 bits) Integerßà Floating pointor rd, rs1, rs2 rd = rs1 OR rs2 fmv.w.x fd, rs fd = rs single = integerori rd, rs1, n rd = rs1 OR n (n-> 12 bits) fmv.x.w rd, fs rd = fs integer = singlenot rd, rs1 rd = !rs1 (one´s complement) Comparison (integer), nà 12 bitsneg rd, rs1 rd = !rs1 + 1 (two’s complement) slt rd, rs1, rs2 if (s(rs1) < s(rs2)) rd = 1; else rd = 0

xor rd, rs1, rs2 rd = rs1 XOT rs2 sltu rd, rs1, rs2 if (u(rs1) < u(rs2)) rd = 1; else rd = 0
srli rd, rs1, n rd = rs1 >> n logical, n-> 5 bits slti rd, rs1, n if (s(rs1) < s(n)) rd = 1; else rd = 0
slli rd, rs1, n rd = rs1 << n n-> 5 bits sltiu rd, rs1, n if (u(rs1) < u(5)) rd = 1; else rd = 0
srai rd, rs1, n rd = rs1 >> n arithmetic, n-> 5 bits seqz rd, rs1 if (rs1 == 0) rd = 1; else rd = 0
sra rd, rs1, rs2 rd = rs1 >> rs2 arithmetic snez rd, rs1 if (rs1 != 0) rd = 1; else rd = 0
sll rd, rs1, rs2 rd = rs1 << rs2 sgtz rd, rs1 if (rs1 > 0) rd = 1; else rd = 0
srl rd, rs1, rs2 rd = rs1 >> rs2 logical sltz rd, rs1 if (rs1 < 0) rd = 1; else rd = 0

Branch instructions (integer registers) Comparison (floating point)
(rd=int register, fs1 and fs2 floating point register)beq t0 t1 etiq Jump to etiq if t0==t1 feq.s rd, fs1, fs2 if (fs1== fs2) rd= 1;else rd = 0 (float)

bne t0 t1 etiq Jump to etiq if t0!=t1 fle.s rd, fs1, fs2 if (fs1<= fs2) rd= 1;else rd = 0 (float)
blt t0 t1 etiq Jump to etiq if t0<t1 flt.s rd, fs1, fs2 if (fs1< fs2) rd= 1;else rd = 0 (float)
bltu t0 t1 etiq Jump to etiq if t0<t1 (unsigned) feq.d rd, fs1, fs2 if (fs1== fs2) rd= 1;else rd = 0 (double)
bge t0 t1 etiq Jump to etiq if t0>=t1 fle.d rd, fs1, fs2 if (fs1<= fs2) rd= 1;else rd = 0 (double)
bgeu t0 t1 etiq Jump to etiq if t0>=t1 (unsigned) flt.d rd, fs1, fs2 if (fs1< fs2) rd= 1;else rd = 0 (double)
bgt t0 t1 etiq Jump to etiq if t0>t1 Function Callsbgtu t0 t1 etiq Jump to etiq if t0>t1 (unsigned) jal ra, address ra = PC; PC = addressble t0 t1 etiq Jump to etiq if t0<=t1 jr ra PC = rableu t0 t1 etiq Jump to etiq if t0<=t1 (unsigned) Hardware Counterj etiq PC = PC + etiq rdcycle rd rd = number of elapsed cycles

Memory Access (integer registers), nà12 bits Memory access (floating point), nà12bitsla rd, address rd = address address->32 bits flw fd, n(rs1) fd = Memory[n+rs1] load floatlb rd, n(rs1) rd = Memory[n+rs1] load byte fsw fd, n(rs1) Memory[n+rs1] = fd store floatlbu rd, n(rs1) rd = Memory[n+rs1] load byte unsigned fld fd, n(rs1) fd = Memory[n+rs1] load doublelw rd, n(rs1) rd = Memory[n+rs1] load word fsd fd, n(rs1) Memory[n+rs1] = fd store doublesb rd, n(rs1) Memory[n+rs1] = rd store byte
sw rd, n(rs1) Memory[n+rs1] = rd store word

Conversion Operations Floating-pont Clasificationfcvt.w.s rd, fs1 From single precision (fs1) to integer (rd) with sign fclass.s rd, fs1 Classify single precision
fcvt.wu.s rd, fs1 From single precision (fs1) to integer (rd) without sign fclass.d rd, fs1 Classify double precision
fcvt.s.w fd, rs1 From integer with sign (rs1) to single precision (fd) Bit position in rd Meaning
fcvt.s.wu fd, rs1 From integer without sign (rs1) to single precision (fd) 0, 7 -Inf, +Inf
fcvt.w.d rd, fs1 From rom double precision (fs1) to integer (rd) with sign 1 Normalized negative
fcvt.wu.d rd, fs1 From double precision (fs1) to integer (rd) without sign 2 Not normalized negative
fcvt.d.w fd, rs1 From integer with sign (rs1) to double precision (fd) 3, 4 -0, +0
fcvt.d.wu fd, rs1 From integer without sign (rs1) to double precision (fd) 5 Non normalized positive
fcvt.s.d fd, fs1 From double (fs1) to single precision (fd) 6 Normalized positive
fcvt.d.s fd, fs1 From single (fs1) to double precision (fd) 8, 9 Signaling NaN, Quiet NaN

