RISC-V Reference Guide (CREATOR Simulator)

System Calls (ecall) Integer Registers
Service Call Code | Arguments Result | Register Name Usage
_ @7) i zero Constant O
Print_int 1 a0 = integer ra Return address (routines/functions)
Pr!nt_float 2 fa0 = float sp Stack pointer
Pr!nt_doyble 3 fa0 = do-uble gp Global pointer
Print s.trlng 4 a0 = string addr : tp Thread pointer
Read_int 5 Integ(-?r in a0 t0..t6 Temporary (NOT preserved across calls)
Read_float 6 Float in fa0 s0..s11 Saved temporary (preserved across
Read_double | 7 Double in calls)
. - fa0 a0, al Arguments for functions / return value
Read_string | 8 a0 = string addr a2..a7 Arguments for functions
= length : Floating-point registers
Sbrk 9 = length Address in fto..ft1l Temporary (NOT preserved across calls)
- a0 fs0..fsll Saved temporary (preserved across
Exit 10 calls)
Print_char 11 a0 = ASCII code i fa@, fal Arguments for functions / return value
Read_char 12 Char in a0 fa2..fa7 Arguments for functions
Data transfer Arithmetic (floating-point, .s/.d)
1i rd, n rd = n (PseudoInst, n-> 32 bits) fmv.s fd, fsl fd = fs1
mv rd, rs rd = rs fadd.s fd, fs1, fs2 fd = fsl+fs2
lui rd, inm rd = inm[31:12] <<12 (extend the sign) fsub.s fd, fs1, fs2 fd = fsi1-fs2
Arlthmetic (Integer) fmul.s fd, fsl, fs2 fd = fs1*fs2
add rd, rsl, rs2 | rd = rsl+rs2 fdiv.s fd, fsl, fs2 fd = fsl1/fs2
addi rd, rsl, n rd = rsl + n (n-> 12 bits) fmin.s fd, fsl, fs2 fd = min(fs1,fs2)
sub rd, rsl, rs2 | rd = rsl- rs2 fmax.s fd, fsl, fs2 fd = max(fsi,fs2)
mul rd, rsl, rs2 [rd = rsl* rs2 fsqrt.s fd, fsl fd = sqrt(fsl)
div rd, rsl, rs2 | rd = rsl/rs2 fmadd.s fd, fsl1l, fs2, fs3 | fd = fs1*fs2+fs3
rem rd, rsl, rs2 | rd = rsl% rs2 fmsub.s fd, ffl, fs2, fs3 | fd = fs1*fs2-fs3
Logical (integer) fabs.s fd, fsl fd = |fs]
and rd, rsl, rs2 | rd = rs1l AND rs2 fneg.s fd, fsi fd = -fs
andi rd, rsi, n rd = rsl AND n (n-> 12 bits) Integer 6—) Floatmgpomt
or rd, rsl, rs2 | rd = rsl OR rs2 fmv.w.x fd, rs fd = single = integer
ori rd, rsl, n rd = rsl1 OR n (n-> 12 bits) fmv.x.w rd, fs rd = fs integer = single
not rd, rsl rd = Irsl (one’s complement) Comparison (integer), n> 12 bits
neg rd, rsi rd = Irsl + 1 (two’s complement) slt rd, rsl, rs2 | if (s(rsl) < s(rs2)) rd = 1; else rd = @
xor rd, rsl, rs2 | rd = rsl XOT rs2 sltu rd, rsi, rs2 | if (u(rsl) < u(rs2)) rd = 1; else rd = @
srli rd, rsl, n rd = rs1 >> n logical, n-> 5 bits slti rd, rsi, n if (s(rsl) < s(n)) rd =1; else rd =0
slli rd, rsl, n rd = rsl << n n-> 5 bits sltiu rd, rsl, n if (u(rsl) < u(5)) rd =1; elserd =0
srai rd, rsl, n rd = rsl >> n arithmetic, n-> 5 bits seqz rd, rsi if (rsl == @) rd = 1; else rd = @
sra rd, rsl, rs2 | rd = rsl >> rs2 arithmetic snez rd, rsi if (rsl != @) rd = 1; else rd = @
sll rd, rsl, rs2 | rd = rsl << rs2 sgtz rd, rsl if (rs1 > 9) rd = 1; else rd = 0
srl rd, rsl, rs2 | rd = rsl >> rs2 logical sltz rd, rsi if (rs1 < Q) rd = 1; else rd = @
Branch Instructlons (Integer reglsters) Comparlson (floating polnt)
(rd=int register, fs1 and fs2 floating point reglster)
beg t0 tl etiq Jump to etiq if t@==t1 feq.s rd, fsl, fs2 | if (fsl== fs2) rd= 1jelse rd = @ (float)
bne t@ t1 etig Jump to etiq if to!=t1 fle.s rd, fsl, fs2 | if (fsic= fs2) rd= 1jelse r‘d = @ (float)
blt t@ t1 etig Jump to etiq if te<tl flt.s rd, fsl, fs2 | if (fsl< fs2) rd= 1ljelse rd = @ (float)
bltu te tl etiq Jump to etiq if t@<tl (unsigned) feq.d rd, fsl, fs2 | if (fsl== fs2) rd= 1jelse rd = @ (double)
bge t@ tl etigq Jump to etiq if te>=t1 fle.d rd, fsl, fs2 | if (fsl<= fs2) rd= 1ljelse rd = @ (double)
bgeu t@ t1 etig Jump to etiq if t@>=t1 (unsigned) flt.d rd, fsl, fs2 | if (fsl< fs2) rd= 1ljelse rd = @ (double)
bgt t0 t1 etiq Jump to etiq if te>tl Function Calls
bgtu t@ t1 etiq Jump to etig if te@>tl1 (unsigned) jal ra, address ra = PC; PC = address
ble to t1 etiqg Jump to etiq if te<=t1 jr ra PC = ra
bleu t0 t1 etiq Jump to etiq if te<=tl (unsigned) Hardware Counter
j etiq PC = PC + etiq rdcycle rd | rd = number of elapsed cycles
Memory Access (integer registers), n>12 bits Memory access (floating point), n>12bits
la rd, address | rd = address address->32 bits flw fd, n(rsl) fd = Memory[n+rsi] load float
b rd, n(rsil) rd = Memory[n+rsl] load byte fsw fd, n(rsl) Memory[n+rsl] = fd store float
lbu rd, n(rsl) rd = Memory[n+rsl] load byte unsigned | fld fd, n(rsil) fd = Memory[n+rsl] load double
lw rd, n(rsl) rd = Memory[n+rsl] load word fsd fd, n(rsl) Memory[n+rsl] = fd store double
sb rd, n(rsi) Memory[n+rsl] = rd store byte
sw rd, n(rsl) Memory[n+rsl] = rd store word
Conversion Operations Floating-pont Clasification
fcvt.w.s rd, fsi From single precision (fsl) to integer (rd) with sign fclass.s rd, fsl Classify single precision
fcvt.wu.s rd, fsi From single precision (fsl) to integer (rd) without sign fclass.d rd, fsl Classify double precision
fcvt.s.w fd, rsl | From integer with sign (rsl) to single precision (fd) Bit position in rd Meaning
fcvt.s.wu fd, rsil From integer without sign (rsl) to single precision (fd) o, 7 -Inf, +Inf
fcvt.w.d rd, fsil From rom double precision (fsl) to integer (rd) with sign 1 Normalized negative
fcvt.wu.d rd, fsl From double precision (fsl) to integer (rd) without sign 2 Not normalized negative
fecvt.d.w fd, rsi From integer with sign (rsl) to double precision (fd) 3, 4 -0, +0
fcvt.d.wu fd, rsi From integer without sign (rsl) to double precision (fd) 5 Non normalized positive
fcvt.s.d fd, fs1 From double (fsl) to single precision (fd) 6 Normalized positive
fcvt.d.s fd, fsi1 From single (fsl) to double precision (fd) 8, 9 Signaling NaN, Quiet NaN
©0SIe ARCOS-UC3M

